
Abstract
Manipulator safeguarding is a critical need for

operations on planetary rovers. The computing environ-
ment on a Mars rover is extremely limited, which necessi-
tates a highly efficient collision checking algorithm. We
present such an algorithm that uses the Oriented Bounding
Box (OBB) and a new primitive called the Oriented Bound-
ing Prism (OBP) to detect potential self-collisions and col-
lisions with terrain objects sensed with the rover’s on-
board stereo cameras; the algorithm thus has both model-
based and sensor-based components. We have implement-
ed the algorithm on JPL’s FIDO rover and have tested it
under realistic field conditions. Performance analysis indi-
cate this method is significantly faster than previously re-
ported results in the literature, in addition to incorporating
sensed geometry. The method is also being used on board
NASA’s twin Mars Exploration Rovers, which are sched-
uled to launch in 2003.

Motivation

Ensuring the safety of rover-mounted manipula-
tors in planetary exploration applications is of great impor-
tance. At best, a manipulator collision results in a lost day
of operations due to latencies in communicating the failure
back to Earth-based operators. At worst, the manipulator
may become stuck in a deployed configuration or may
damage the rover’s stereo cameras, making further driving
extremely difficult or impossible. Safeguarding for plane-
tary rovers also presents a set of challenges not present in
most other manipulator applications. Obviously, there can
be no human observer or supervisor to trigger an emergen-
cy stop, and manipulator motions cannot be pre-pro-
grammed to guarantee safety since the manipulator target
and surrounding obstacles are not known in advance. Final-
ly, a highly time- and memory-efficient approach that does
not impose significant operational delays is required due to
the restricted computational resources of planetary rovers:
for example, NASA’s 2003 Mars Exploration Rovers
(MER) mission will use 12MHz RAD6000 processors.
While manipulator commands can will be checked for po-
tential collisions before being sent to the rover, on-board
safeguarding can catch errors introduced in the command
sequencing or communication process, or operational er-
rors not detected by pre-checking of individual trajectories
(e.g. accidentally commanding the arm to move from a
stowed to deployed position when it is already in a de-

ployed may cause a self-collision). On-board safeguarding
is also essential for autonomous arm motions, which rule
out the possibility of manual a priori safety checking of the
arm trajectory.

This paper describes a model- and sensor-based
method for preventing manipulator self-collisions and col-
lisions with external objects. The method is efficient
enough in terms of both time and memory to be used on-
board robots with limited computational resources. We
have tested the approach on the Jet Propulsion Lab’s FIDO
rover (Figure 1; see [Huntsberger99]) for both safeguard-
ing of manually-commanded trajectories and fully autono-
mous arm deployments. We have also ported the algorithm
to the MER flight software environment, and it will be used
on-board the Mars Exploration Rovers during their surface
operations in 2004.

Related Work

Historically, there has been significant interest in
planning algorithms for generating collision-free trajecto-
ries given a model of the robot and obstacles (e.g.
[Barraquand92]), including on-line but non-optimal ap-
proaches ([Khatib86]). The less complex problem of effi-
cient on-line collision detection for manipulators has
received less attention from the robotics community. Two
broad categories of approaches are model-based and sen-
sor-based, with sensor-based methods being further cate-
gorized as reactive or predictive. Both model-based and

Efficient Sensor/Model Based On-Line Collision Detection for
Planetary Manipulators

Chris Leger
Jet Propulsion Laboratory

cleger@robotics.jpl.nasa.gov

Figure 1:JPL FIDO rover during field testing.

predictive sensor-based methods explicitly model the robot
and obstacles, with sensor-based approaches typically rely-
ing on LIDAR or stereo cameras to build the obstacle mod-
el. [Bon96] describes a model-based on-line approach for a
telerobotic application: the manipulator is represented as a
series of line segments with non-zero thickness, and a pri-
ori obstacles in the environment are represented as polyhe-
dra. One reactive sensor-based approach, described in
[Feddema94], uses capacitive proximity sensors to directly
modify commanded manipulator motions to reduce or
eliminate the motion of a link towards a sensed object.
Greenspan and Burtnyk describe an on-line, constant-time
approach suitable for sensor- or model-based use
[Greenspan97], though this approach is inappropriate for
our application due to difficulty in efficiently checking ma-
nipulator self-collisions and higher memory requirements
(the 3D lookup table requires 1MB of storage and grows
exponentially with desired resolution and linear dimen-
sion). Another voxel-based approach to collision detection
(not specific to manipulators) is described in [Garcia94].
Previous work by the author of this paper was specialized
to a robotic excavator with substantial dynamic effects,
taking advantage of the workspace and manipulator geom-
etry to simplify collision detection [Leger98]. This ap-
proach is not suitable for our application due to the limited
manipulator representation and inability to check for self-
collisions. More recently, [Hartman01] addressed interfer-
ence prevention for two manipulators with significant dy-
namic effects, modeling the manipulator links with
Oriented Bounding Boxes (OBBs; [Gottschalk96]), which
we also use in the work described in this paper.

The primary differences between previous ap-
proaches and ours are as follows: both model-based (for
self-collisions) and sensor-based (for external obstacles)
collision tests must be included, and the method must be
very fast and memory-efficient to meet the restrictions of
the rover’s on-board computer.

Oriented Bounding Boxes and Prisms

The heart of any manipulator collision detection
algorithm is a means of checking two primitives (shapes)
for collisions. While there exist a number of methods for
detecting collisions between three-dimensional objects
(e.g. [Canny86], [Gilbert88], [Green94]), the Oriented
Bounding Box appears to offer the best trade-off of speed
and accuracy for our application. A key advantage of OBBs
is that no divisions, transcendental operations, or iterations
are required to determine if two OBBs overlap; this leads
to an extremely fast and robust implementation. In this
work, we derive a modified OBB (called an Oriented
Bounding Prism) and related intersection tests that effi-
ciently model cylindrical geometry, since our rover’s ge-
ometry is more accurately represented by a collection of
cylinders and boxes than by boxes alone. In contrast to the

automatically-derived hierarchy of OBBs (called an OBB-
Tree) terminating in triangular faces, we use a more re-
stricted hierarchy of OBBs whose lowest level (highest de-
tail) is a set of OBBs rather than triangles.

The standard OBB intersection tests (from
[Gottschalk96]) are based on a theorem stating that for any
two convex polyhedra, if the polyhedra do not overlap then
there will be a plane of separation whose normal (called the
separating line) is either parallel to at least one face of ei-
ther polyhedra, or perpendicular to one edge of each poly-
hedra. Thus, to determine whether two OBBs overlap, one
checks all possible normals of the separating plane (there
are 15 cases) by projecting the extents of the OBBs onto
each potential separating line (Figure 2). If the sum of the
projected extents is greater than the sum of the projected ra-
dii of the OBBs plus a toleranceε (the minimum “safe”
separation), then the two OBBs are non-overlapping; oth-
erwise, the remaining lines of separation must be tested.
The general rule for determining if two OBBsA and B
overlap is:

A and B are separated along the vector L iff
(1)

 where

(2)

(3)

L

T

T L•

A
B

b1B1

a2A2

b2B2

a1A1

ra rb

Figure 2: Separating line test for two OBBs
In this example, L is a separating line and is par-
allel to A1, the Y-axis of OBB A. B has been
transformed to be relative to A’s coordinate sys-
tem. T is the location of B’s center relative to A.

T L• r a rb ε+ +>

r a aj Aj L•
j 0=

2

∑=

r b bjBj L•
j 0=

2

∑=

andε is a safety tolerance. (See “Rover Model” below for
a discussion on choosing an appropriate value forε.) These
tests can be made more computationally efficient ifB is
transformed intoA’s coordinate system: considering the re-
strictions on L (it must be , , or where

), many of the vector terms reduce to sca-
lars. For example, in the case where , the
equations reduce to:

(4)

(5)

(6)

where indicates thejth element ofB’s ith axis. In the
worst case (that is, when two OBBs are intersecting) the in-
tersection tests require approximately 200 multiplications
and additions, though the typical operation count is signif-
icantly lower [Gottschalk96].

Our modified OBBs for cylinders, which we call
Oriented Bounding Prisms (OBPs), are based on the obser-
vation that ann-sided regular prism approximating a cylin-
der can be represented byn/2 overlapping, concentric
OBBs, wheren is an integer multiple of 4. We define two
complementaryOBBs A and Ac as being concentric and
having the same dimensions but with one OBB offset by a
90 degree rotation about the X axis. Equivalently,A andAc
have the same center and orientation but have their Y and
Z dimensions interchanged. There aren/4 pairs of comple-
mentary OBBs in ann-sided OBP (Figure 3). Each of the
OBBs and its complement share many subexpressions in
equations (4)-(6): the intersection tests for the a comple-
ment OBB are performed simply by swapping the Y and Z
dimensions of one or the other OBBs. By interleaving the
intersection tests for one OBB and its complement, the total
number of calculations can be significantly reduced. The

calculation of does not depend on any OBB dimen-
sions, and is thus identical in the overlap tests for an OBB
and its complement, and parts ofra and rb are shared as
well. To check A and its complement for collision withB,
again using , the additional equation for the
complement of A is

(7)

and there is an additional comparison to determine if
is greater than . WhenA is a single OBB

and both B and its complement are to be checked, there is
a corresponding equation for in which and are
exchanged. There are separate routines for checking two
OBBs for collisions, for checkingA and its complement
againstB, and for checkingA againstB and its comple-
ment. The complementary routines can be readily derived
from the two-OBB routine by adding the complementary
calculations (e.g. Equation (7)); the two-OBB routine can
in turn be directly derived from Equations (1)-(3).

Our system uses octagonal prisms (i.e. n=8),
yielding a maximum approximation error of 8.2% in the ra-
dial direction: that is, if an object is 0.082R away from ac-
tually contacting a cylinder of radius R, then a collision
may be reported depending on the orientation of the ap-
proximated cylinder. The 8-sided approximation requires 4
OBBs at the lowest level, in addition to one higher-level
OBB completely enclosing the cylinder. In contrast, using
the OBB-Tree structure that ultimately represents each face
would require at least 16 OBBs at the lowest level of the hi-
erarchy (1 for each of 8 sides, and 4 for each end). Larger
values ofn can certainly be used, though one soon runs into
diminishing returns: the maximum error forn=4 is 41.4%,
for n=8 is 8.2%, forn=12 is 3.5%, and forn=16 is 2.0%.
For our application,n=4 is too conservative, since there can
sometimes be very little clearance during docking or final
target approach. We will assumen=8 in the discussions in
the remainder of the paper.

While checking two OBBs for intersections, or
checking complementary OBBs against another OBB, can
be performed using the equations described above, separate
procedures are required to check OBP-OBB, OBP-OBP,
and OBB-OBP pairs for collisions. (Note that the collision
checks are order dependent, sinceB is always transformed
into A’s coordinate system.) The steps in testing OBPA for
collisions with OBBB are:

Procedure 1: cylinderBoxCheck

• Compute the dimension
• CheckA’ (the OBB aligned withA and having

dimensions (a0, a1, a2’)) and its complementAc’
againstB. Stop here if a collision is detected.

• Compute the OBBB45 by rotatingB aboutA’s x-

Ai Bj Ai Bj×
i j, 0 1 2, ,{ }∈

L A0 B2×=

T L• T2B21 T1B22–=

r a a1 B22 a2 B21+=

r b b0 B10 b1 B00+=

Bi j

Figure 3: An OBP approximation (n=8)to a cyl-
inder viewed end-on (i.e. along the X axis)

Complementary OBBs

Complementary OBBs Z

Y

Max error
= 0.082r

T L•

L A0 B2×=

r a' a2 B22 a1 B21+=

T L• r a' r b+

r b' b1 b2

a2' a1 π 8⁄()tan=

axis by 45o

• CheckA’ andAc’, againstB45

The steps in testing OBBA for collisions with OBPB are
similar:

Procedure 2: boxCylinderCheck

• Compute the dimension
• CheckA againstB’ (the OBB aligned withB and

having dimensions (b0, b1, b2’)) and its comple-
ment. Stop here if a collision is detected.

• Compute the OBBB’ 45 by rotatingB’ aboutB’s
x-axis by 45o

• CheckA againstB’45 and its complement.

Finally, checking two OBPs for collisions uses both of the
above procedures:

Procedure 3: cylinderCylinderCheck

• (Optional) Check the OBB enclosingA against
the OBB enclosingB. Stop here if there are no
collisions.

• CheckA’ and Ac’ (computed as incylinderBox-
Check) against the OBB enclosingB.

• If A’ had a collision, then checkA’ against the
OBP for B using the procedure above. Stop here
if collisions are detected.

• If Ac’ had a collision, then checkAc’ against the
OBP forB usingboxCylinderCheck. Stop here if
collisions are detected. (At this point, we have
checkedA’s axis-aligned sub-parts against all
parts ofB).

• Compute the OBBB’ 45 by rotatingB’ aboutA’s
x-axis by 45o

• CheckA’ andAc’ against the OBB enclosingB45.
• If A’ had a collision, then checkA’ against the

OBP for B45 using the procedure above. Stop
here if collisions are detected.

• If Ac’ had a collision, then checkAc’ against the
OBP forB45 usingboxCylinderCheck.

We use the same data structure for OBBs and
OBPs, with a flag to indicate the object type. This facili-
tates the checking of an OBB as a faster first test for cylin-
der-box and cylinder-cylinder collisions, since the usual
OBB-OBB test can be used directly. Only in cases of near-
collision do the more involved OBP tests need to be per-
formed. It is possible that further reduction in the average
number of total operations can be reduced by eliminating
some of the initial tests (e.g. the OBB approximation to cyl-
inders that is checked before the OBP) based on runtime
analyses of typical cases.

Note that the rotations and the use of the tangent

function above depend only on constants, and are hard-
coded; no transcendental functions are used during runt-
ime.

Rover Model

The rover’s geometry is represented by a hand-
built hierarchical model of OBBs and OBPs. Each of the 4-
DOF manipulator’s links has one high-level OBB encom-
passing all of the link’s geometry, and the second through
fourth links have lower-detail OBBs and OBPs represent-
ing more detailed geometry. The rover body is represented
by several high-level OBBs and more detailed children.
The front part of the rover’s suspension is slightly more
complex, since it is articulated. Each of the front wheel as-
semblies is represented by an OBP for the wheel and an
OBB for the steering arm that can be moved to match the
current steering angles. These parts, along with the bogie
tube (the horizontal link leading towards the front wheel in
Figure 4) and steering actuator housing are also affected by
the rocker and bogie joint angles. All suspension parts for
each side of the rover are enclosed in an OBB that moves
with the rocker and bogie angles, but which is large enough
to contain all parts for all steering angles. The rear portion
of the suspension is not modeled since it is not in the ma-
nipulator’s workspace.

Because of the kinematics of FIDO’s manipula-
tor, no self-collisions are possible within the links of the
manipulator; however, self-collisions with other parts of
the rover body or suspension are possible. Self-collisions
are tested for between links 2, 3, 4 and the rover body and
suspension parts; no self-collisions are possible for link 1.
In some special cases, collisions between the robot’s end
effector are allowed: when docking, the end effector inten-
tionally collides with a docking rig, and when placing in-
struments the end effector must contact the terrain (which
will be described in the next section). For these cases, a flag

b2' b1 π 8⁄()tan=

Figure 4: Models of the rover body, suspen-
sion, and manipulator. The rover suspension
and steering joints are in their zero positions.

Link 1

Link 2

Link 3

Link 4

Bogie

can be set indicating that the tip of the end effector should
not be checked against the docking rig or terrain.

The safety toleranceε in Equation 1 can be used
to account for uncertainty in the rover model and motion
control system.ε should be set to the sum of the uncertain-
ties in the geometric knowledge for each OBB/OBP: for
example, if a dimension for an OBB is only known to with-
in 1mm, thenε for that part should be 1mm. This uncertain-
ty could be due to limited knowledge of the model, error in
joint angle measurements, or due to deflection of the links
under load.ε can also be used to account for minor devia-
tions between the planned and actual trajectory of the ma-
nipulator. The value ofε used in Equation 1 should be the
sum of theε values for each of the two OBBs/OBPs. For
FIDO, we used a value of 2mm for all object pairs.

Multiresolution Terrain Model

The FIDO rover is equipped with several sets of
stereo cameras, two of which (the “front HazCam” and
“BellyCam”) image different parts of the manipulator
workspace. For manipulator safeguarding, the raw stereo
data must be transformed into a representation that allows
efficient checking of collisions between manipulator and
terrain objects. Given the typical operating environment of
the robot--roughly horizontal terrain covered in rocks up to
30cm in size--an elevation map is an efficient and reason-
ably accurate representation for objects in the arm work-
space. The height of each grid cell in the initial elevation
map is the maximum height of all stereo data points (from
both the BellyCam and HazCam) that lie within the cell’s
bounds in the horizontal plane. A default elevation is used
to fill in regions of the elevation map that are either occlud-
ed or are outside the sensors’ fields of view.

A multiresolution pyramid of elevation maps is
then built from this first, highest-resolution elevation map.
Each successively coarser map has half the linear resolu-
tion of the previous map, and the height of each grid cell is
the height of the four higher-resolution grid cells encom-
passed by the lower-resolution grid cell.

As with rover objects, OBBs are used to represent
terrain geometry. However, since the elevation maps are
aligned with the rover frame and only one manipulator-ter-
rain test is performed at a time, we do not need to explicitly
create and store OBBs for each terrain grid cell. Instead, we
use a single OBB and set the dimensions and center based
on the grid cell being checked. The orientation of the OBB
remains constant since the grid cells are always oriented
parallel to the rover’s coordinate frame.

Figure 5 shows the OBBs involved in a collision
between the terrain and part of the manipulator’s end effec-
tor. The terrain elevation map is shown as a grid of points.
The highest-resolution terrain OBB that is colliding with
the end effector is shown as a tall, thin, solid box, and the
hierarchy of lower-level terrain OBBs that contain the col-

liding cell are shown as outlines.

System Integration

There were several candidate methods for inte-
grating collision checking with the on-board rover software
and the operations (off-board sequencing) software:

• Continuously check for arm collisions as the arm
is moving.

• Check each commanded motion in the low-level
rover software as the command is received

• Check each higher-level command (e.g. deploy
arm, move to target) when the command is for-
mulated (either on the ground by an operator, or
on the rover for autonomous arm deployments)

We use a combination of the latter two approaches for sev-
eral reasons. First, the rover controller checks that the arm
accurately follows commanded trajectories, so checking
trajectories a priori, rather than during execution, offers a
high degree of safety. Second, it is preferable to know the
rover is in a safe state if a collision is detected. Thus, pre-
venting an arm deployment in the first place is preferred
over halting the arm in a deployed state just short of a col-
lision. Third, doing collision checking “on the ground” (i.e.
as part of sequence planning by the human operators) leads
to significant time savings by eliminating the entire abort-
contingency-replan cycle involved in the execution of a
failed command.

On-board safeguarding is implemented by check-
ing each command for collisions in the routines for abso-
lute and relative joint-space motion that are used by all
higher-level arm control code. The current and goal joint
angles are computed, and the trajectory is uniformly sam-

Figure 5: Example collision configuration. The
lowest-resolution OBB enclosing the entire eleva-
tion map is ommitted for clarity.

Colliding
part

Highest-resolution terrain OBB

Low-resolution
terrain OBBs

pled in joint-space such that samples are spaced less than
one degree apart for the joint with the largest commanded
motion. (Note that all DOFs are controlled to start and end
their motions at the same time regardless of commanded
joint motions.) Each pose along the trajectory is then
checked for collisions; if any are detected, then the motion
is not performed and the calling routine is informed of the
failure. The routine for autonomous arm deployments also
checks the entire sequence (deploy, move to standoff via
point, place end effector, return to standoff, and stow) be-
fore commanding any single part of the trajectory.

Experiments and Performance

The initial testing phase of the collision avoidance
software involved using it as a warning system for FIDO’s
safety observers: if the operators commanded a motion that
would cause a collision, an audible alarm was sounded to
alert the safety observer that a manual abort might be re-
quired. As errors in the rover model were fixed and the
team gained confidence, the software was used to automat-
ically halt dangerous motions, coming in particularly
handy while debugging new, higher-level algorithms. We
conducted field trials in May 2001 to train the 2003 MER
project scientists in rover-based geology, and extensively
used the collision checking software during rover opera-
tions planning (every commanded arm motion was
checked and confirmed safe before being sent) and as an
audible alert. At the time of the field trials, the MER rover
was not slated to do on-board collision checking, so we
only used the audible alert on FIDO; however, the software
has since been incorporated into the MER on-board soft-
ware. No false negatives (undetected collisions) were ob-
served during our field testing, though there were some
false positives during stowing and deployment of the arm,
which involves small clearances between arm and rover
objects. This is not a serious problem for FIDO or MER,
since the stow and deploy sequences are hard-coded and
have been manually verified to be free of collisions.

We have not noticed any significant operational
delay while running the software on-board FIDO, and this
observation is supported by performance measurements we
have made are on a desktop workstation (for the FIDO
model), and on the MER flight software testbed, a 12 MHz
RAD6000 (for the MER model). Repeated tests of a trajec-
tory that has a collision between the end effector and terrain
yield the following numbers, on an 800MHz Pentium III
(roughly 4-6 times faster than FIDO’s computer):

• Elevation map building (not counting stereo
range map generation): 10ms

• Checking entire sequence (6 trajectories) for col-
lisions: 2.4ms

• 34.7 arm poses checked per trajectory: 12µs per
arm pose

• 18.2 primitive-primitive checks per arm pose:

0.64µs per primitive.
The key numbers are 12µs per arm pose and 2.4ms per se-
quence (in this case, deploying the arm from a stowed po-
sition to a target on the terrain). For the MER testbed
computer and rover model, we measured the average time
to check eight different arm poses for collisions (including
terrain collisions). Several of the poses used had collisions
in the end effector (the last link checked), while the others
did not. The average time to test a pose for collisions was
5.4ms, and an average of 48 primitive-to-primitive colli-
sion tests were required for each pose. The MER model has
81 objects (about twice as many as the FIDO model), and
unlike the FIDO model, the manipulator links must be
checked for collisions with each other since the MER arm
is capable of self-collisions.

In comparison, [Bon96] reports a time of 1.23ms
for a model-based approach with 5 manipulator objects,
running on a 100MHz R4600; [Greenspan96] reports a
time of “less than 10ms” on a 66MHz 486, with 15s re-
quired for building the voxel map from a priori object mod-
els. No performance measurements were reported in
[Hartman01], though their implementation is also likely to
be fast due to the use of OBBs. While direct quantitative
performance comparisons cannot be made without using
the same hardware, compiler, and arm and obstacle objects,
our performance measurements lead us to believe that our
algorithm offers substantially decreased computational
complexity.

Memory requirements for the algorithm are rela-
tively small: the multiresolution map (64x64 at the highest
resolution) requires 36K, and the FIDO arm and rover
model requires an additional 4.2K. The executable size is
56K when compiled for a Pentium with gcc, with both de-
bugging symbols (-g) and optimization (-O2) enabled. It is
worth noting that the memory requirements are far less
than for voxel-based approaches: [Greenberg96] lists a size
of 1MB for the voxel map, and both memory and computa-
tion time increase with the cube of the desired robot or en-
vironment resolution. Our method is also directly
applicable to multi-manipulator systems: the articulated
suspension effectively acts as two additional rover-mount-
ed manipulators. This also stands in contrast to voxel-based
approaches that must precompute a voxel map of the envi-
ronment, thus having difficulty in efficiently checking for
collisions between moving objects.

Limitations

While efficient and robust, our method does have
some limitations. One is that, since the terrain representa-
tion involves reducing a 3D surface to a 2.5D elevation
map, concavities in the 3D surface that are not aligned with
the axis of projection cannot be accurately represented. For
example, imagine a small ‘cave’ in front of the rover. The
elevation map created with a vertical axis of projection

cannot represent the cave, only the surface above the cave.
The significance of this limitation depends on the expected
frequency of such situations in the rover’s environment,
which has been fairly low in our experience. The effect can
be mitigated to some degree by aligning the axis of projec-
tion used in the terrain map with the optical axis of the rov-
er’s stereo cameras, since the cameras can only create 2.5D
representations of the environment. In this way, concavi-
ties that can be sensed by the rover will be more accurately
represented in the terrain map. The accuracy is best near the
center of the field of view, and degrades so that at the edge
of the field of view, the terrain OBBs are misaligned with
respect to the terrain-camera axis by half the field of view.

Another limitation is that significantly more
OBBs and/or OBPs can be required to represent rover ob-
jects that are not accurately modeled by boxes or cylinders;
this is part of the reason why the MER rover model is more
complex than the FIDO model. Finally, the amount of stor-
age space required for the elevation map grows with the
number of cells in the elevation map, which itself grows
with the square of the linear extent of the map divided by
the cell size.

Conclusion

We have presented a highly efficient and robust
collision detection method suitable for implementation on
robots with limited computing resources. The method can
detect both self-collisions and collisions with sensed ter-
rain, is directly applicable to multi-manipulator systems,
and preliminary performance measurements suggest a sig-
nificant speedup over methods previously reported in the
literature. We have implemented and tested the method on
the FIDO rover, and the method is being used on the 2003
Mars Exploration Rovers.

Acknowledgments

This work was carried out at Jet Propulsion Labo-
ratory, California Institute of Technology, under contract
with National Aeronautics and Space Administration. The
author would like to thank the members of the FIDO team
for their significant efforts in developing, maintaining, and
running the FIDO rover as an extremely robust platform for
technology development: Paul Schenker, Hrand Aghazari-
an, Eric Baumgartner, Yang Cheng, Tony Ganino, Mike
Garrett, Terry Huntsberger, Brett Kennedy, Lee Magnone,
Jeff Norris, Ashitey Trebi-Ollennu, and Eddie Tunstel.

References

[Barraquand92] J. Barraquand, B. Langlois, and J.-C.
Latombe. Numerical potential field techniques for robot
path planning.IEEE Transactions on Systems, Man, and
Cybernetics, SMC-22(2):224 241, March/April 1992.

[Bon97] B. Bon and H. Seraji. Real-time model-based ob-
stacle detection for the NASA Ranger Telerobot. InPro-

ceedings of the 1997 IEEE International Conference on
Robotics and Automation, Albuquerque, New Mexico,
April 1997.

[Canny86] J. F. Canny. Collision detection for moving
polyhedra.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 8:200-209, 1986.

[Feddema94] J. Feddema and J. Novak. Whole arm obsta-
cle avoidance for teleoperated robots, inProceedings of
the 1994 IEEE International Conference on Robotics
and Automation, pp. 3303-3309, San Diego, 1994.

[Garcia-Alonso94] A. Garcia-Alonso, N. Serrano, and J.
Flaquer. Solving the collision detection problem.IEEE
Computer Graphics and Applications, 13(3):36-43,
1994.

[Gilbert88] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi.
A fast procedure for computing the distance between ob-
jects in three-dimensional space.IEEE Journal of Robot-
ics and Automation, vol. RA-4:193-203, 1988.

[Gottschalk96] S. Gottschalk, M. C. Lin and D. Manoch.
OBB-Tree: A hierarchical Structure for Rapid Interfer-
ence Detection.Technical Report TR96-013, Depart-
ment of Computer Science, University of North
Carolina, Chapel Hill, 1996.

[Green94] N. Greene. Detecting intersection of a rectangu-
lar solid and a convex polyhedron. InGraphics Gems IV,
pp. 74-82, Academic Press, 1994.

[Greenspan96] M. Greenspan and N. Burtnyk, Obstacle
Count Independent Real-Time Collision Avoidance. In
Proceedings of the 1996 IEEE International Conference
on Robotics and Automation, Minneapolis, Minnesota,
April 1996, pp. 1073-1080. 4.

[Hartman01] L. Hartman. A real-time approach to the co-
ordination of multiple manipulators. InProceeding of
the 6th International Symposium on Artificial Intelli-
gence and Robotics & Automation in Space: i-SAIRAS
2001, St-Hubert, Quebec, Canada, June 18-22, 2001.

[Huntsberger99] T. L. Huntsberger, E. T. Baumgartner, H.
Aghazarian, Y. Cheng, P. S. Schenker, P. C. Leger, K. D.
Iagnemma, and S. Dubowsky, "Sensor fused autono-
mous guidance of a mobile robot and applications to
Mars sample return operations," inProc. SPIE, Vol.
3839, Boston, MA, Sept. 1999.

[Khatib86] O. Khatib. Real-Time Obstacle Avoidance for
Manipulators and Mobile Robots,The International
Journal of Robotics Research, Spring 1986, Volume 5,
Number 1, pp. 90-98.

[Leger98] C. Leger, P. Rowe, J. Bares, S. Boehmke, A.
Stentz. Obstacle detection and safeguarding for a high-
speed autonomous hydraulic excavator, InProceedings
of SPIE Vol 3525, Boston, MA 1998.

	Abstract
	Motivation
	Figure 1: JPL FIDO rover during field testing.

	Related Work
	Oriented Bounding Boxes and Prisms
	Figure 2: Separating line test for two OBBs
	Figure 3: An OBP approximation (n=8)to a cylinder viewed end-on (i.e. along the X axis)
	Procedure 1: cylinderBoxCheck
	Procedure 2: boxCylinderCheck
	Procedure 3: cylinderCylinderCheck

	Rover Model
	Figure 4: Models of the rover body, suspension, and manipulator. The rover suspension and steerin...

	Multiresolution Terrain Model
	Figure 5: Example collision configuration. The lowest-resolution OBB enclosing the entire elevati...

	System Integration
	Experiments and Performance
	Limitations
	Conclusion
	Acknowledgments
	References

